

CYLMBPV22 Control Card Hardware

Instruction Manual

Content

1. V2.2 System Control Card Wiring Definition and Description	5
1.1 Power Supply	7
1.2 Serial Port	7
1.3 Input and Output Interface	8
1.4 Galvo Head Control	
1.5 Laser Source Interface	10
1.5.1 Fiber Laser Pin Description	11
1.5.2 CO2 Glass Tube Pin Description	11
1.5.3 Pump Laser Pin Description	11
1.4.4 CO2 RF Tube Pin Description	12
2. Main Functions of the Control Card	13
3. Physical Picture of the Control Card	14

Preface

Beijing Chongyi Technology Co., Ltd. (CY Tech) is an advanced technology enterprise dedicated to the research, development and application of laser scanning systems. Since its establishment, the company has always focused on providing cutting-edge laser marking, laser cleaning, laser welding software systems and professional technical solutions to global customers. So far, the company has successfully applied for a number of copyright and patent certificates related to laser scanning software. As an enterprise with technology as its core, CY Tech has assembled a R&D team composed of a group of senior engineers and industry experts. Not only are they proficient in various laser scanning technologies and their applications, but they are also able to keenly capture market trends and customer needs and provide tailor-made solutions.

In the field of laser marking, CY Tech has developed a number of efficient and stable software systems. These software systems can be widely used in surface treatment of metals, non-metals, semiconductors and other materials to achieve precise and rapid marking. At the same time, the company also provides customers with one-stop services such as marking effect optimization and material adaptability testing to ensure that customers' products are competitive in the market.

For laser cleaning, CY Tech's R&D team broke through the bottleneck of traditional cleaning technology and developed an efficient and environmentally friendly laser cleaning software system. This system can be widely used for surface cleaning of

various materials, such as metal, plastic, glass, etc., solving various cleaning problems for customers.

What's more, we are also engage in laser welding's R&D, CY Tech also has rich experience and technology accumulation. The laser welding software system developed by the company has the characteristics of high precision, high speed and high stability, and can be widely used in automobile manufacturing, aerospace, electronics manufacturing and other industries.

In addition to providing software systems, CY Tech also provides customers with a full range of technical support and services. The company has a professional pre-sales team and after-sales team that can provide customers with timely and effective technical support and after-sales services. At the same time, the company also provides training and guidance to customers to help them better apply and maintain software systems. The company has strong R&D capabilities and a professional technical team to provide customers with high-quality and reliable technical services. If you need software systems and technical support for laser marking, laser cleaning, laser welding, etc., please contact us!

Security Information

- 1. Please read this section carefully before using the CYLMBPV22 control card. This product is a system used to control stepper motors. If you have any questions, please contact our company in time.
- 2. Please prevent the board from being damaged by moisture, dust, corrosion, and impact from foreign objects. When storing and using the board, please avoid damage by electromagnetic fields and static electricity.
- 3. Before starting the wiring, you need to carefully read the interface definition and instructions, and perform wiring according to the instructions to avoid damage to the board and peripherals.
- 4. When using it with other boards of our company, you need to read the instructions for use of the stepper motor related parts of the board.

1. V2.2 System Control Card Wiring Definition and Description

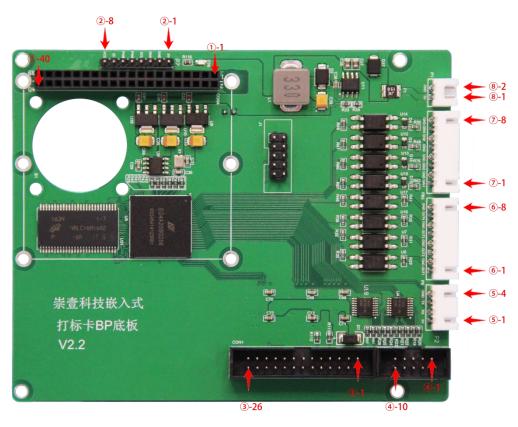


Figure 1-(1) Control card interface labeling diagram

No.	Terminal	Functions	Cables order
1	Host computer connection port	The connection between the host computer and the control board	(a) 1. 5V
2	IO directly derived from the host computer	It can be configured in the software that ②-6 and ②-8 are short-circuited and can be used as a switch to trigger cleaning in online cleaning mode.	2-1: -5V, 2-2: GND, 2-3: SDA, 2-4: SCL, 2-5: PWA, 2-6: PWB, 2-7: IO, 2-8: VCC
3	Laser source interface	Used to output control laser related signals	See Table 1-(5) for details

4	Galvo head interface	Used to output galvanometer	See Table 1-(4) for
	Gaivo nead interface	control signals	details
(5)			⑤-1: 5V,
	Serial interface	Serial communication	⑤-2: TX,
	Serial interface	Serial communication	⑤-3: RX,
			⑤-4: GND
6			⑥-1: OUT1,
			⑥−2: GND,
			⑥-3: OUT2,
	Output interface	Ontrod control dispel	⑥-4: GND,
	Output interface	Output control signal	⑥-5: OUT3,
			⑥-6: GND,
			⑥−7: OUT4,
			⑥-8: GND。
7			⑦-1: GIN1,
			⑦-2: GND,
		Detect external input signals	⑦-3: GIN2,
	Input interface		⑦-4: GND,
	input interface	Detect external input signals	⑦-5: GIN3,
			⑦-6: GND,
			⑦-7: GIN4,
			⑦-8: GND
8	System power supply	Provide power to the system	

Table 1-(1) External interface definition

1.1 Power Supply

The control card can be powered by 15V/24V power supply. It is recommended to choose a 2A DC power supply.

1.2 Serial Port

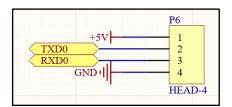


Figure 1-(2) Serial port pin definition diagram

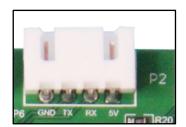


Figure 1-(3) Physical screenshot of the serial port interface

(Note: The TX interface is connected to the TX of the external device, and the RX interface is connected to the RX of the external device.)

Pin	Name	Note
1	+5V	Provide +5V power
2	TX	Send data
3	RX	Receive data
4	GND	Connected to digital ground

Table 1-(1)

1.3 Input and Output Interface

Port	Mode	Function
GIN1	Default	GIN1 and GND short contact trigger marking
GIN2	NONE	GIN2 input is invalid
	LIFT TO STOP	Shorting GIN2 and GND allows laser marking;
		GIN2 is disconnected from GND, and GIN1
		trigger marking is invalid;
		During the marking process, GIN2 and GND
		are disconnected and marking stops.
	PRESS TO STOP	During the marking process, GIN2 and GND
		are short-circuited, and both laser marking and
		red-light preview stop.
GIN3	Can be configured	
GIN4	according to user	
	needs	
GOUT1	Default	Output level signals to the outside world. After
		clicking on power on, red light or marking in
		the main interface, a high-level signal will be
		output; after clicking on power off or entering
		standby mode (see software description), the
		level will be pulled down.
GOUT2	Check the end signal	The level is pulled low before marking starts,
		pulled high after marking is completed, and the
		high level continues for a period of time and
		then pulled low. The high-level duration is set
		by software. In this mode, the level of GOUT2
		is not affected by power-off and power-on
		states.
	Check the end signal	GOUT2 and GOUT1 output signals are
0.000		synchronized
GOUT3	Can be configured	
GOUT4	according to user	
	needs	

Table 1-(3)

1.4 Galvo Head Control

The galvo head control signal is a digital signal and can be directly connected to the digital galvo head.

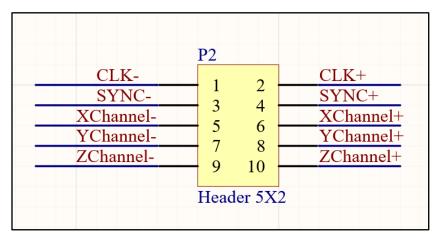


Figure 1-(4) Schematic diagram of galvo head pin definition

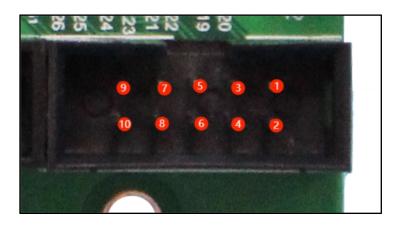


Figure 1-(5) Actual screenshots of the galvo head interface

Pin	Name	Note
1, 2	CLK-; CLK+	Galvo head synchronized clock
3, 4	SYNC-; SYNC+	Galvo head synchronization signal
5, 6	XCHANNEL+; XCHANNEL+	Galvo head X-axis data channel
7、8	YCHANNEL+; YCHANNEL+	Galvo head Y-axis data channel
9、10	ZCHANNEL+	Galvo head Z-axis data channel

Table 1-(4)

CYLMBPV22 contains five groups of CLK, SYNC, X Channel, Y channel, and Z channel, a total of ten signal lines, which can control the biaxial galvanometer and dynamic focusing galvanometer. Digital signals are recommended to be connected by twisted pairs with shielding.

1.5 Laser Source Interface

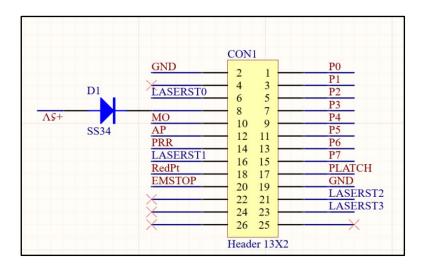


Figure 1-(6) Schematic diagram of laser interface pin definition

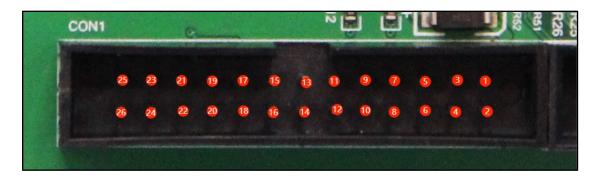


Figure 1-(7) Physical screenshot of the laser interface part

1.5.1 Fiber Laser Pin Description

Pin	Name	Note
1, 3, 5, 7, 9, 11, 13,	P0~P7	Laser power value
15		
17	PLATCH	Laser power value latch signal
6, 16, 21, 23	LASERST0~LASERST3	Laser status
8	+5V	+5V power supply
10	MO	Main oscillator on
12	AP	Modulator on
14	PRR	Laser repetition pulse
		frequency
18	Red Pt	Auxiliary infrared laser
20	EMSTOP	Emergency stop
2、19	GND	Digitally
4、22、24、25、26		

Table 1-(5)

1.5.2 CO2 Glass Tube Pin Description

Pin	Name	Note
17	PLATCH	Switch Signal
11	P5	PWM Signal
19	GND	GND Signal

Table 1-(6)

1.5.3 Pump Laser Pin Description

Pin	Name	Note
17	PLATCH	Switch Signal
11	P5	PWM Signal
19	GND	GND Signal

Table 1-(7)

1.4.4 CO2 RF Tube Pin Description

Pin	Name	Note
14	PRR	PWM Signal
19	GND	GND Signal

Table 1-(8)

2. Main Functions of the Control Card

The CYLMBPV22 control card can perform laser marking and laser cleaning. The CYLMBPV22 control card can support fiber laser, CO2 laser, UV laser and other types of lasers.

- Equipped with cleaning and marking functions
- 4 USB interfaces for connecting external devices
- One network port, which can be connected through the network
- One HDMI interface, can be connected to an external screen
- 4 inputs and 4 outputs (two 5V outputs)
- Support dynamic galvo head
- •Support multiple laser types

3. Physical Picture of the Control Card

If any questions, please be free to contact us. Thank you.

Company: Beijing Chongyi Technology Co., Ltd.

E-Mail: sales01@bjchongyi.com

Web.: www.vipcylaser.com

We chat: chongyi0201

Whats app: +86 185 1158 5382

Address: Room 9001, 9th Floor, Building 2, No. 10, Baifuquan Road, Science &

Technology Park, Changping District, Beijing, China